viernes, 6 de julio de 2012

CICLO DE CARNOT


CICLO DE CARNOT

El ciclo de Carnot se produce cuando un equipo que trabaja absorbiendo una cantidad de calor Q1 de la fuente de alta temperatura y cede un calor Q2 a la de baja temperatura produciendo un trabajo sobre el exterior.



ETAPAS DEL CICLO DE CARNOT

El ciclo de Carnot consta de cuatro etapas: dos procesos isotermos (a temperatura constante) y dos adiabáticos (aislados térmicamente). Las aplicaciones del primer principio de la termodinámica están escritos acorde con el criterios de signos termodinámico.




1. Expansión isoterma C→D:

Se parte de una situación en que el gas se encuentra al mínimo volumen del ciclo y a temperatura T1 de la fuente caliente. En este estado se transfiere calor al cilindro desde la fuente de temperatura T1, haciendo que el gas se expanda. Al expandirse, el gas tiende a enfriarse, pero absorbe calor de T1 y mantiene su temperatura constante. Al tratarse de un gas ideal, al no cambiar la temperatura tampoco lo hace su energía interna, y despreciando los cambios en la energía potencial y la cinética, a partir de la primera ley de la termodinámica vemos que todo el calor transferido es convertido en trabajo.


2. Expansión adiabatica D → A:

La expansión isoterma termina en un punto tal que el resto de la expansión pueda realizarse sin intercambio de calor. A partir de aquí el sistema se aísla térmicamente, con lo que no hay transferencia de calor con el exterior. Esta expansión adiabática hace que el gas se enfríe hasta alcanzar exactamente la temperatura T2en el momento en que el gas alcanza su volumen máximo. Al enfriarse disminuye su energía interna, con lo que utilizando un razonamiento análogo al anterior proceso. Esta vez, al no haber transferencia de calor, la entropía se mantiene constante.


3. Compresión isoterma A → B:

Se pone en contacto con el sistema la fuente de calor de temperatura T2 y el gas comienza a comprimirse, pero no aumenta su temperatura porque va cediendo calor a la fuente fría. Al no cambiar la temperatura tampoco lo hace la energía interna, y la cesión de calor implica que hay que hacer un trabajo sobre el sistema. Al ser el calor negativo, la entropía disminuye.


4. Compresión adiabática B →C:

Aislado térmicamente, el sistema evoluciona comprimiéndose y aumentando su temperatura hasta el estado inicial. La energía interna aumenta y el calor es nulo, habiendo que comunicar un trabajo al sistema. En este proceso, no hay transferencia de calor, por lo tanto la entropía no varía.





CICLO REAL

Todos los procesos reales tienen alguna irreversibilidad, ya sea mecánica por rozamiento, térmica o de otro tipo. Sin embargo, las irreversibilidades se pueden reducir, pudiéndose considerar reversible un proceso cuasiestático y sin efectos disipativos.
Los efectos disipativos se reducen minimizando el rozamiento entre las distintas partes del sistema y los gradientes de temperatura; el proceso es cuasiestático si la desviación del equilibrio termodinámico es a lo sumo infinitesimal, esto es, si el tiempo característico del proceso es mucho mayor que el tiempo de relajación (el tiempo que transcurre entre que se altera el equilibrio hasta que se recupera).
Por ejemplo, si la velocidad con la que se desplaza un émbolo es pequeña comparada con la del sonido del gas, se puede considerar que las propiedades son uniformes espacialmente, ya que el tiempo de relajación mecánico es del orden de V1/3/a (donde V es el volumen del cilindro y a la velocidad del sonido), tiempo de propagación de las ondas de presión, mucho más pequeño que el tiempo característico del proceso, V1/3/w (donde w es la velocidad del émbolo), y se pueden despreciar las irreversibilidades.
Si se hace que los procesos adiabáticos del ciclo sean lentos para minimizar las irreversibilidades se hace imposible frenar la transferencia de calor. Como las paredes reales del sistema no pueden ser completamente adiabáticas, el aislamiento térmico es imposible, sobre todo si el tiempo característico del proceso es largo. Además, en los procesos isotermos del ciclo existen irreversibilidades inherentes a la transferencia de calor. Por lo tanto, es imposible conseguir un ciclo real libre de irreversibilidades, y por el primer teorema de Carnot la eficiencia será menor que un ciclo ideal.


APLICACIONES


  • Refrigerador de Carnot
Al ser un ciclo reversible, podemos invertir cada uno de los procesos y convertir la máquina de Carnot en un refrigerador. Este refrigerador extrae una cierta cantidad de calor | Qf | del foco frío, requiriendo para ello una cierta cantidad de trabajo | W | , arrojando una cantidad de calor | Qc | en el foco caliente.

El coeficiente de desempeño de un refrigerador reversible como el de Carnot es:


Ya que, como en la máquina de Carnot, la cantidad de calor intercambiada con cada foco es proporcional a la temperatura de dicho foco.

Para un refrigerador que trabaje entre una temperatura de 5°C y 22°C, este coeficiente de desempeño vale:


Este valor es el máximo que puede alcanzar un refrigerador real, aunque los valores prácticos del COP están muy por debajo de esta cantidad.

Si el refrigerador de Carnot se considera como una bomba de calor, su coeficiente de desempeño es:


Que para los mismos valores de las temperaturas de los focos nos da:


también muy por encima de los valores reales de las bombas de calor.





No hay comentarios:

Publicar un comentario